Functional significance of differential eNOS translocation.

نویسندگان

  • Fabiola A Sánchez
  • Nirav B Savalia
  • Ricardo G Durán
  • Brajesh K Lal
  • Mauricio P Boric
  • Walter N Durán
چکیده

Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luminal flow induces eNOS activation and translocation in the rat thick ascending limb. II. Role of PI3-kinase and Hsp90.

Endothelial nitric oxide synthase (eNOS) regulates NaCl absorption by the thick ascending limb of the loop of Henle (THAL). We found that augmenting luminal flow induces eNOS activation and translocation to the apical membrane of THALs (Ortiz PA, Hong NJ, and Garvin JL. Am J Physiol Renal Physiol 287: F274-F280, 2004). In other cells, eNOS activation by shear stress is mediated by phosphatidyli...

متن کامل

eNOS translocation but not eNOS phosphorylation is dependent on intracellular Ca2+ in human atrial myocardium.

In endothelial cells, two ways of endothelial nitric oxide (NO) synthase (eNOS) activation are known: 1) translocation and 2) Akt-dependent phosphorylation of the enzyme at Ser(1177) (Ser(1177) eNOS). We have recently shown that agonist-induced Ser(1177) eNOS phosphorylation also occurs in human myocardium (10). In this study, we investigated the Ca(2+) dependency of these two mechanisms in hum...

متن کامل

Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells.

OBJECTIVE We have previously shown in COS-7 cells that targeting of endothelial NO synthase (eNOS) to the Golgi or plasma membrane (PM) regulates the mechanism and degree of eNOS activation. However, little is known about the functional significance of eNOS targeting in endothelial cells (ECs). The goal of the current study was to isolate these 2 pools of enzyme in ECs and determine their funct...

متن کامل

Coordinated endothelial nitric oxide synthase activation by translocation and phosphorylation determines flow-induced nitric oxide production in resistance vessels.

BACKGROUND/AIMS Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS In isolated, perfused rat arterial mesenteric beds, we...

متن کامل

(-)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells.

The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 2006